Enrollment No: Exam Seat No:

C.U.SHAH UNIVERSITY **Summer Examination-2017**

Subject Name: Basic Mathematics

Subject Code: 2TE01BMT1 Branch: Diploma (All)

Semester: 1 Date: 22/03/2017 Time: 10:30 to 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) $\log 1 =$ _____.
 - a) 0 b) *e*
- c) 1 d) none of these
- **b**) $\log_2 8 =$ _____.

 - a) 3 b) 2
- c) 1
- d) none of these
- c) $\binom{n}{n} = \underline{\hspace{1cm}}$.

 - a) *n* b) 0
- c) 1
- d) n-1
- **d)** _____ is a constant term in the expansion of $\left(x^2 + \frac{1}{x^2}\right)^{\circ}$.

- a) 7^{th} b) 5^{th} c) 4^{th} d) 3^{rd}
- e) Co-efficient of x in the expansion of $(1+x)^4$ is _____.
 - a) 1
- b) 0

- f) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a square matrix then $A' = \underline{\hspace{1cm}}$.

- a) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ d) none of these
- g) If $A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}$ then $adjA = \underline{\hspace{1cm}}$.
- a) $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ b) $\begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}$ c) $\begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$ d) $\begin{bmatrix} -4 & -2 \\ -3 & -1 \end{bmatrix}$

h) If
$$\begin{vmatrix} x & 1 \\ 9 & 3 \end{vmatrix} = 0$$
 then $x =$ _____.
a) 2 b) 0 c) 3

d) 1

i)
$$\sec^2 30^\circ - \tan^2 30^\circ =$$
_____.
a) -1 b) 0 c) 1 d) none of these

j) If
$$\theta = \frac{\pi}{4}$$
 then the value of $\sin 2\theta =$ _____.

a) 2 b) 0 c) 1 d) -1

k)
$$\tan^{-1} x + \cot^{-1} x =$$
______.
a) -1 b) 0 c) 1 d) none of these

1) If
$$\bar{a} = i + 2j + 3k$$
 then $|\bar{a}| = ____.$

a) 1 b) 6 c) $\sqrt{14}$ d) none of these

m) If vectors \overline{a} and \overline{b} are perpendicular to each other then $\overline{a} \cdot \overline{b} = \underline{\hspace{1cm}}$

a) 1 b) 0 c) -1 d) none of these

n) If $\overline{a} = (2,1,0)$ and $\overline{b} = (0,1,3)$ then $\overline{a} \cdot \overline{b} = \underline{\hspace{1cm}}$.

a) 1

b) 0

c) 3 d) 6

Attempt any four questions from Q-2 to Q-8

Attempt all questions

a) Solve:
$$\frac{4\log 3 \times \log x}{\log 9} = \log 27$$
 (05)

b) Prove that
$$\log_{10} 800 = 2 + 3\log_{10} 2$$
. (05)

c) Prove that
$$\log_{\mathbf{v}}(\sqrt[5]{\mathbf{x}})\log_{\mathbf{z}}(\mathbf{y}^4)\log_{\mathbf{x}}(\sqrt[4]{\mathbf{z}^3}) = 1.$$
 (04)

Q-3 Attempt all questions

a) If
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$ are two matrices then verify that $(AB)^T = B^T A^T$ (05)

b) Find the inverse of the matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
. (05)

c) If
$$A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 & 3 \\ 6 & 4 \end{bmatrix}$ then find matrix $A + 2B$ and $3A - 4B$. (04)

Q-4 Attempt all questions

a) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then find the value of $A^2 - 4A$. (05)

- **b)** Solve the equations 3x 2y = 8 and 5x + 4y = 6 by using matrix method. (05)
- c) Find the midterm of $(2x+3y)^8$. (04)

Q-5 Attempt all questions

- a) Find the co-efficient of x^6 in the expansion of $(x+2)^9$. (05)
- **b)** Expand: $(x+2)^5$ (05)
- c) If the midterm of $\left(\frac{x}{3} + 3\right)^{10}$ is 8064 then find the value of x. (04)

Q-6 Attempt all questions

- a) Find the constant term of $\left(\frac{x}{3} + \frac{3}{x}\right)^8$. (05)
- **b)** Simplify: $(10i + 2j + 3k) \cdot [(i 2j + 2k) \times (3i 2j 2k)].$ (05)
- c) Prove that angle between two vectors i + 2j and i + j + 3k is $\sin^{-1}\left(\sqrt{\frac{46}{55}}\right)$. (04)

Q-7 Attempt all questions

- a) Prove that $\sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \sin^2 \frac{5\pi}{4} + \sin^2 \frac{7\pi}{4} = 2$. (05)
- **b**) Forces $F_1 = i + 2j 3k$ and $F_2 = i j + 2k$ act on a particle under the influence of these forces, particle moves from point (3,1,2) to (1,3,-1). Find the work done.
- c) If $\bar{a} = (2,1,0)$, $\bar{b} = (1,-1,3)$ and $\bar{c} = (-1,2,1)$ then find $\bar{a} + 2\bar{b} 3\bar{c}$ and $|\bar{a} + 2\bar{b} 3\bar{c}|$. (04)

Q-8 Attempt all questions

- a) Prove that $\frac{\sin 2A + \sin 4A + \sin 6A + \sin 8A}{\cos 2A + \cos 4A + \cos 6A + \cos 8A} = \tan 5A.$ (05)
- **b)** Draw the graph of $y = \sin x$, $0 \le x \le \pi$. (05)
- c) Prove that $\tan^{-1} \frac{5}{7} + \tan^{-1} \frac{1}{6} = \frac{\pi}{4}$ (04)

